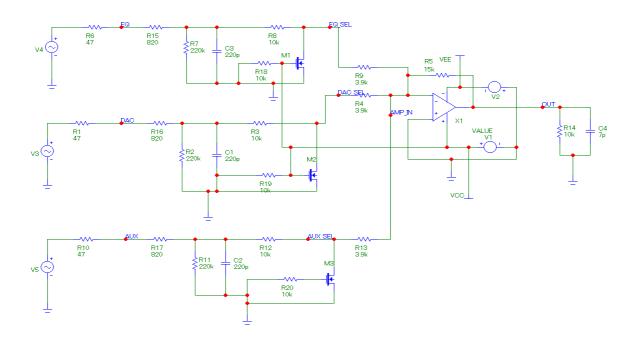


Circuit Design

Block Diagram

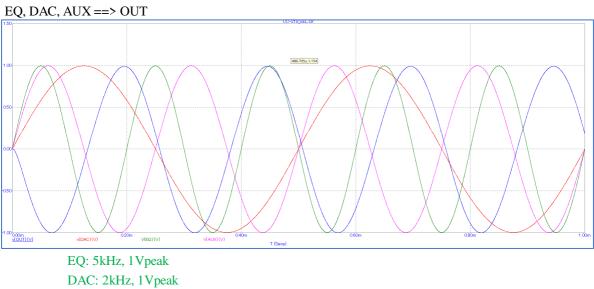


Contents:

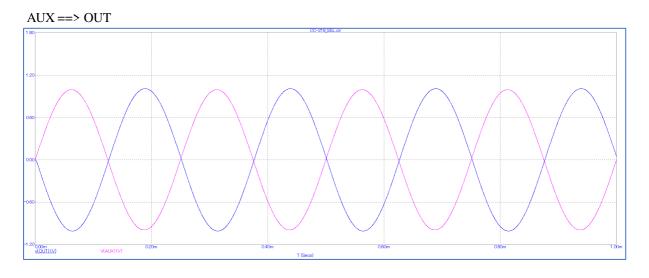
Simulation of Selector Simulation of Matrix Schematic Power Dissipation

Simulation of Selector

* Schematics for simulation

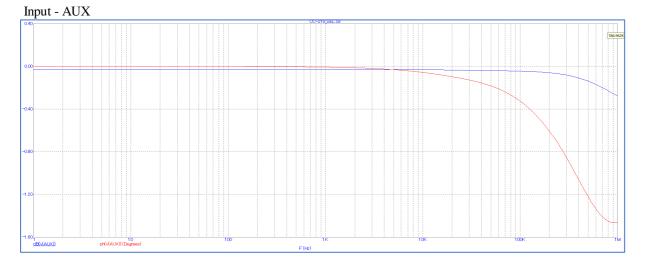


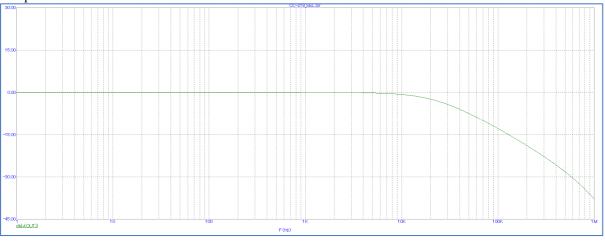
Op amp: OPA627 N-MOSFET: IRFP460


* Transient analysis

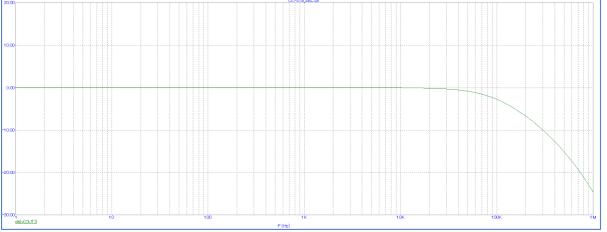
Settings

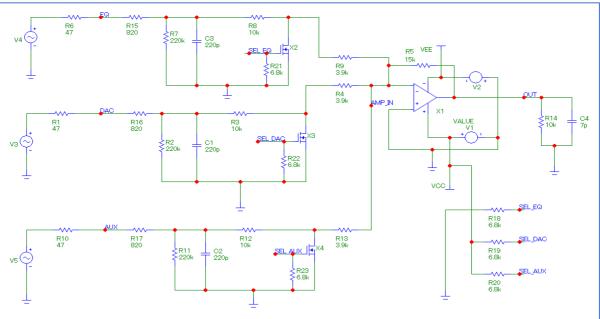
Transient Analysis Limits			-	- 0	×
Run Add Delete	Expand Stepping.	PSS Properties Help 🐚 🙈 🤊 🔇	h		
Maximum Run Time Im	Run Options	Normal			
Output Start Time (tstart)	<u>S</u> tate Variable	es Zero 💌			
Maximum Time Step 0.1u	Operating				
Number of Points 51	Operating				
Temperature Linear 27	Auto Sca	le Ranges 🔽 Periodic Steady State			
Retrace Runs 1					
Ignore Expression Errors Page P	X Expression	Y Expression	X Range	Y Range	>
	T	v(оит)	0.001,0,0.0002	1.5,-1,0.5	_
	Т	v(DAC)	0.001,0,0.0002	1.5,-1,0.5	
	T	V(EQ)	0.001,0,0.0002	1.5,-1,0.5	-
	T	V(AUX)	0.001,0,0.0002	1.5,-1,0.5	-
	40 8 0				-
	7	V(AMP_IN)	0.001,0,0.0002	1.5,-1,0.5	
	1	V(AMP_IN) V(EQ_SEL)	0.001,0,0.0002	1.5,-1,0.5	-
	T			. 07 01	-


AUX: 4kHz, 1Vpeak


* AC analysis

AC Analysis Limits									- <u> </u>	×
Run <u>A</u> dd	Delete	Exp	pand	Stepping	Properties	<u>H</u> elp	🖻 🚓 🤊	C*		
Frequency Range Log	1000k,1			Run Option	s Normal	•				
Number of Points	1001			<u>S</u> tate Varia	bles Zero	<u> </u>				
Temperature Linear 👻	27									
Maximum Change %	6			🔽 Operati	S 282 3					
Maximum Change %	5			I♥ Operau	ng Point					
Noise Input	NONE		-		ng Point ale Ranges					
	-		<u>•</u>		ale Ranges					
Noise Input Noise Output	NONE	P		Auto Sc	ale Ranges	Y Expressi	ion	X Range	Y Range	
Noise Input Noise Output	NONE 2			Auto Sc	ale Ranges	Y Expressi	ion	X Range	Y Range	;
Noise Input Noise Output	NONE 2 Page	1	X Exp	Auto Sc	ale Ranges ilate Plots	Y Expressi	ion		-	
Noise Input Noise Output	NONE 2 Page	1	X Exp	Auto Sc	late Ranges late Plots dB(v(AUX))	Y Expressi	ion	1e+6,1,200000	0.4,-1.6,0.4	

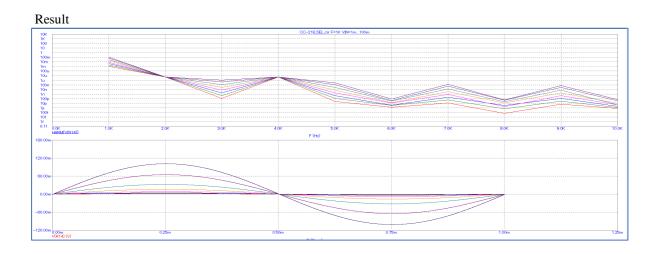


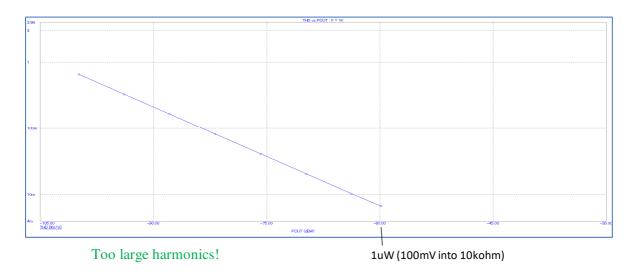

Treble rolls off!!! It's probably due to the capacitance of IRFP460. ==> Replace IRFP460 w/ CSD15571Q2

CSD15571Q2

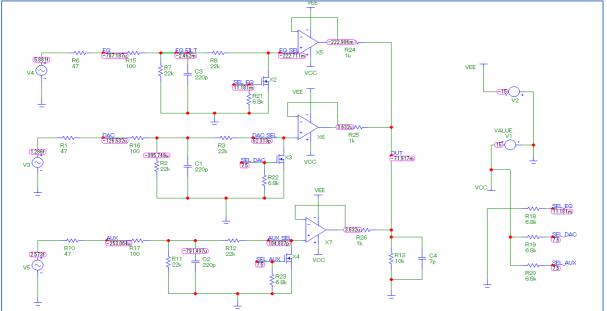
Treble still rolls off but the cutoff frequency is higher. GSF2301 may raise the cutoff frequency, because it has smaller capacitance. Unfortunately, the SPICE model of GSF2301 is not available.

* Revised schem of SEL

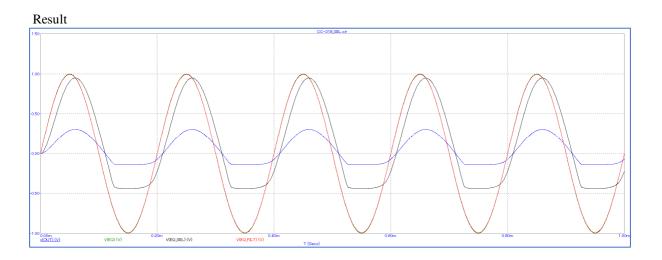



Op amp: OPA627 N-MOSFET: CSD15571Q2

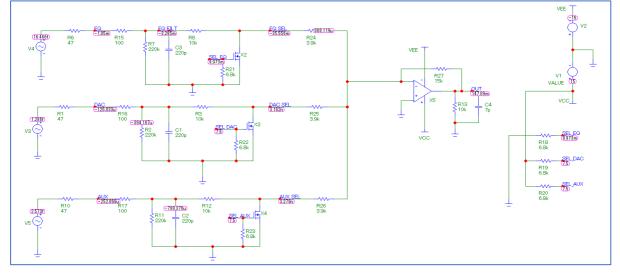
In the figure above, EQ is selected.


* THD

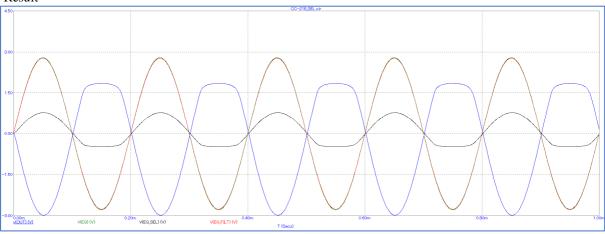
Harmonic Distortion Analysis Lim	its			<u> </u>	×
Run <u>A</u> dd De	lete	Expand Step	pping PSS Properties Help 🔄 🚉 🥑 💌		
Fundamental Frequency	1K		Run Options Normal 💌		
Name of Input Source	V4	•	State Variables Zero 💌		
Input Source Amplitude Log 👻	100m, 1m, 2		✓ Operating Point		
Name of Source Resistor None Name of Load Resistor R14			✓ Auto Scale Ranges		
			Accumulate Plots		
Noise Frequency Range 100K, 1]	Periodic Steady State		
Temperature Linear 💌	27				
Max Simulation Cycles	50				
Steady State Tolerance	1u				
	1m				
Highest Harmonic in THD	7				
	1				
Number of Time Points	51				
Number of Time Points	1				
Number of Time Points	51 51	X Expression	Y Expression X Range	Y Range	>
Number of Time Points Number of Frequency Points	51 51	X Expression	Y Expression X Range HARM(V(R14)) 10000,0,1000	Y Range	>
Number of Time Points Number of Frequency Points Ignore Expression Errors Page Image	51 51	X Expression		10000, 1e-16	
Number of Time Points Number of Frequency Points Ignore Expression Errors Page	51 51 P 1 F	X Expression	HARM(V(R 14)) [10000,0,1000	10000,1e-16	
Number of Time Points Image: Second	51 51 P 1 F	X Expression	HARM(V(R14)) [0000,0,1000 V(R14) 0.00125,0,0.00	10000,1e-16 0 0.18,-0.12,0.0	
Number of Time Points Number of Frequency Points Ignore Expression Errors Page Image: Image in the image in th	51 51 1 F 2 T F	X Expression	HARM(V(R14)) 10000,0,1000 V(R14) 0.00125,0,0.00 THD(HARM(V(R14))) 10000,0,1000	10000, 1e-16 0 0.18,-0.12,0.0 1,0,0.2	

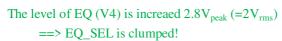


* Alternative circuit - passive adder

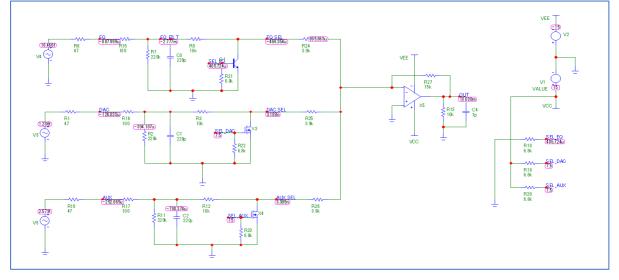


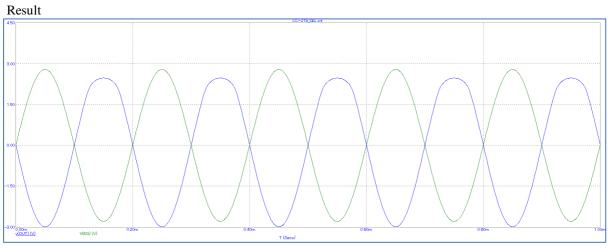
Passive adder

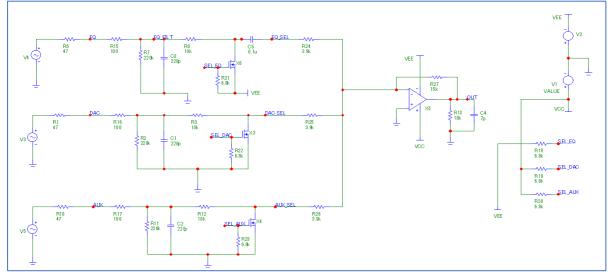


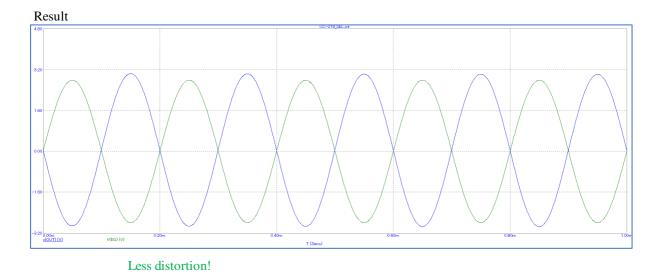

NMOS acts as diode clump! EQ_SEL can't swing below 0.44V

* Original circuit (redrawn schem)




Result

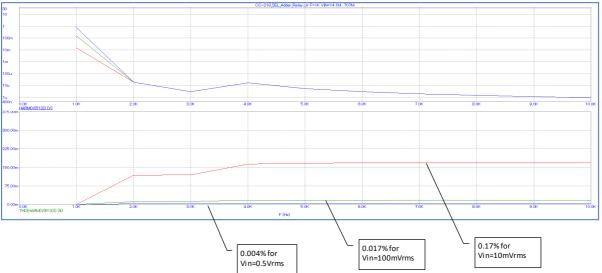

BJT is used instead of NMOS



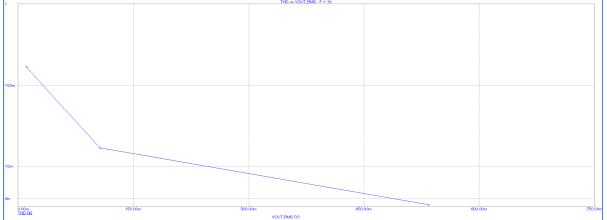
Output still distorted!

* Another attempt - NMOS clumped to VEE

The source of NMOS connected to VEE (-15V) AC coupling to the adder



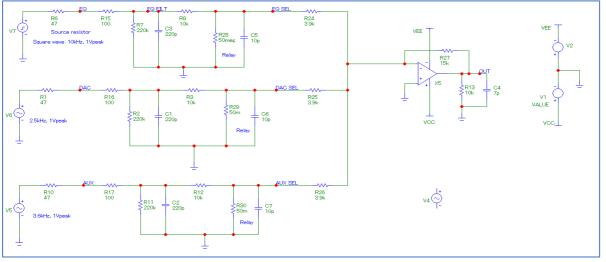
Transient response - sine wave $\int_{1}^{\infty} \int_{1}^{\infty} \int_{1$


Freq Resp

	1.00			CC-218_SEL_Adder_Relay.cir			
	0.00						
	-1.00						
	200						
							×
							× 1
							× 1
	-3.00						· · · · · · · · · · · · · · · · · · ·
							N
1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	-4.00	10	100	16	10K	100K	1M
	dB(v(EQ))	ph(v(EQ)) (Degrees)					
	1.20						
	0.80						
	0.80						
	0.80						
	0.40						
	0.40						
	0.40						
	0.40						
	0.40						
	0.40						
ል(«CUTI)	0.40						
1.9%/	0.40						
	0.40			К			

Harmonic distortion

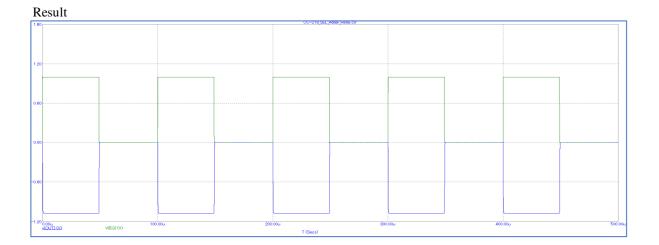
Output vs THD



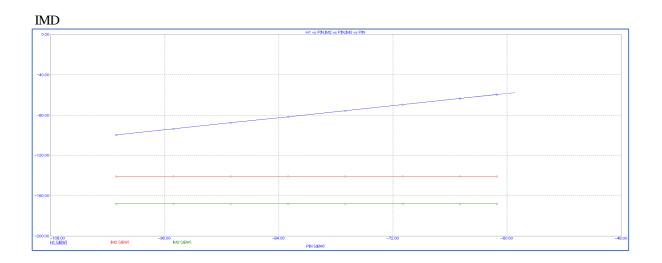
Tips on MC-12: Click the chart above, then the following dialog appears.

Curves	Title	
THD vs. VOUT_RMS	THD vs VOUT_RMS: F = 1K X Axis C F C VIN C VIN C VIN C VIN C VIN C VIN C Number	ver C dB
AddDelete	PIN Name POUT All All Gain C Peak RMS Buffer Designator	All
Plot Group	What Run to Plot	
Labels	VIN 14.1M	
Update During Run		

Select the options indicated by the red circles.

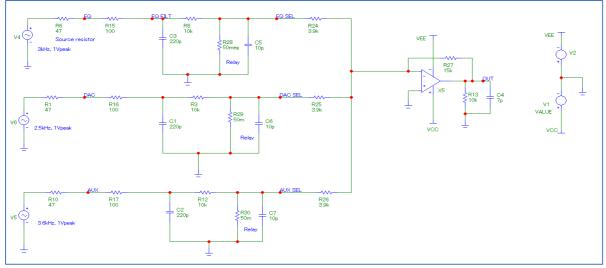

Square wave response

Settings of square wave source

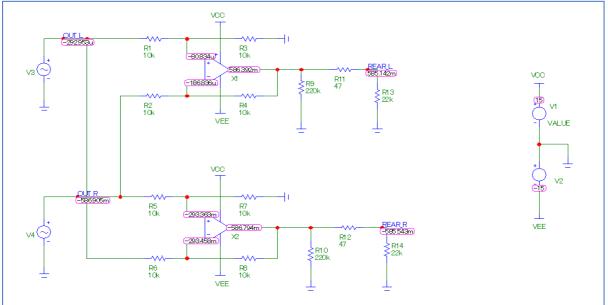

Name		Value	-						
MODEL	E :	Show SQU	ARE		•	🗆 Sho	w Ch	ange	
Display		1030					Sł	nape	
Pin Markers	Pin Names	Pin Numbe	ers 🔽 C	urrent 🔽 I	Power	Condit	ion B	order 🍓 🛛 Fill	P
PART=V7							Volta	ige vs. Time	
MODEL=SQI	JARE								1
SMOKE=									a
COST= POWER=							IMPL PULS		
SHAPEGROU	IP=De fault						SAW	тоотн	
PACKAGE=	Di-Deladit						SQU	ARE INGLE	
	ncel Eont	. Add	Delete	Browse,	1				
			Poloco	0.000000					
New Fir	nd Plot	. Syntax	IBIS,	Help					
nabled TRU		•	Columr	ns 3	-				
🖥 Help Bar					File I	<u>link</u>			
Show Data or	Exit			Source: Lo	cal page	'Models'			
P	1 0		P2	0.1u			P3	49u	
P	4 49.1u		P5	100u			VONE	1	Ξù.
VITED	0								

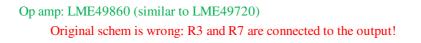
10kHz square wave

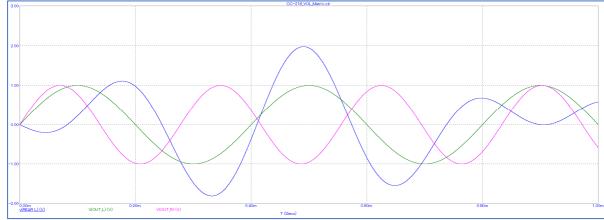
Crosstalk EQ selected, EQ=0V, DAC=1V_{peak}, AUX=0V


Crosstalk from DAC: 19uV_{peak}... -94.4dB

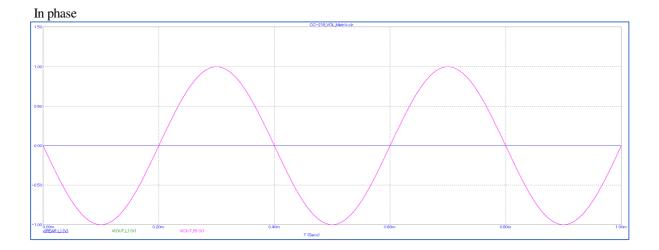
* Conclusion

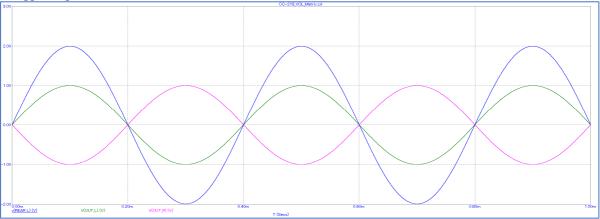

Relay + Adder is the best solution!


Final circuit


Simulation of Matrix

* Schematics for simulation



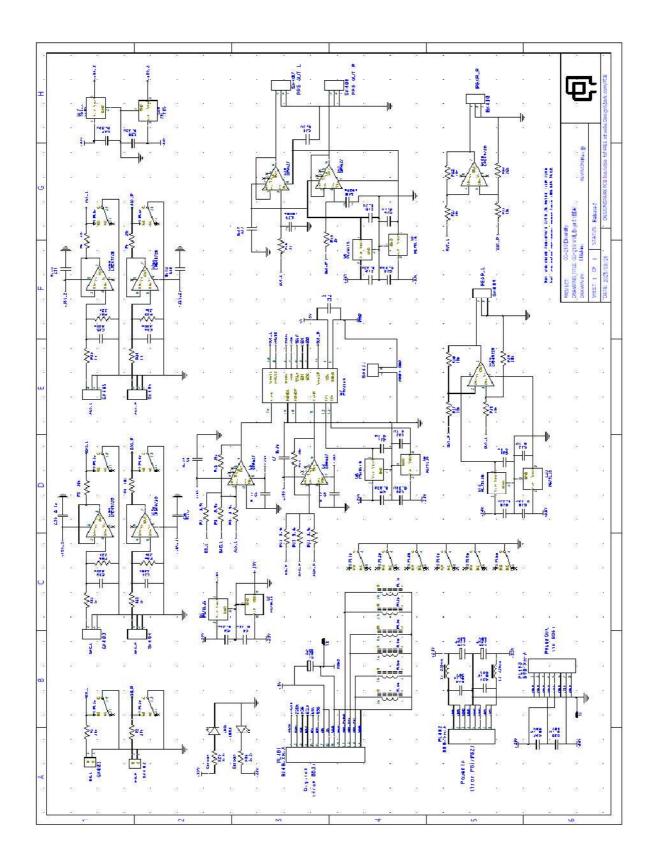

* Transient - sine wave

V3 (OUT_L): 2.5kHz, 1V_{peak} V4 (OUT_R): 3.6kHz, 1Vpeak

In opposite phase

* Freq resp

3.01m	Lonly		-00	218_VOL_Matrix.cir		
5.0 Im						
3.01m			.		+	
.02m						
.03m						
3.04m			- -		****	
.04m						
dB(v(OUT L))		10	100	1K	10K	100K
.00m						
50m						
.00m						-+-+
50m						
.00m						
50m to(v(REAR L))		10	100	1K	10К	100K
.75m						
.00m						
.00m						
.25m			- -		+	
50m						
.75m						
6.00m (REAR L) (V)		10	100	1K	10K	100K


I quit simulation of Matrix here, because its SQ is not important.

Schematic

For the latest schematic, see CC 218_VOL Schematic.pdfCC-218_VOL_B - Schematic.pdf.

2025/03/21

Printed: 2025/4/8

Power Dissipation

* Current dissipation estimate

2024/12/20

Device	Otv	Current dissipation		Total current dissipation		
Device	Qty	V+	V-	+23V	-23V	
LME49720	3	12. OmA	12. OmA	36. OmA	36. OmA	
0PA627	4	7. OmA	7. OmA	28. OmA	28. OmA	
PGA2310	1	10. OmA	10. OmA	10. OmA	10. OmA	
LED	1	10. 5mA	10. 5mA	10. 5mA	10. 5mA	
Total				84. 5mA	84. 5mA	

[END OF DOCUMENT]