

CC-218 VOL BOARD

Design

Printed: 2025/6/8

2023/08/20 2025/06/08

Circuit Design

Block Diagram

Block Diagram: CC-218 VOL (BD4)

Contents:

Simulation of Selector

Simulation of Matrix

Schematic

Power Dissipation

CircuitDesign 1 / 21

Simulation of Selector

* Schematics for simulation

Printed: 2025/6/8

Op amp: OPA627 N-MOSFET: IRFP460

* Transient analysis

Settings

CircuitDesign 2 / 21

EQ, DAC, AUX ==> OUT

Printed: 2025/6/8

EQ: 5kHz, 1Vpeak DAC: 2kHz, 1Vpeak AUX: 4kHz, 1Vpeak

AUX ==> OUT

The waveform seems right.

* AC analysis

Settings

CircuitDesign 3 / 21

Freq resp is flat till 100kHz.

Treble rolls off!!!

It's probably due to the capacitance of IRFP460.

==> Replace IRFP460 w/ CSD15571Q2

CircuitDesign 4 / 21

CSD15571Q2

Printed: 2025/6/8

Treble still rolls off but the cutoff frequency is higher. GSF2301 may raise the cutoff frequency, because it has smaller capacitance. Unfortunately, the SPICE model of GSF2301 is not available.

* Revised schem of SEL

Op amp: OPA627

N-MOSFET: CSD15571Q2

In the figure above, EQ is selected.

CircuitDesign 5 / 21

* THD

Settings

Printed: 2025/6/8

Result

Too large harmonics!

1uW (100mV into 10kohm)

CircuitDesign 6 / 21

* Alternative circuit - passive adder

Printed: 2025/6/8

Passive adder

NMOS acts as diode clump! EQ_SEL can't swing below 0.44V

CircuitDesign 7 / 21

* Original circuit (redrawn schem)

Printed: 2025/6/8

The level of EQ (V4) is increased $2.8V_{peak}$ (= $2V_{rms}$) ==> EQ_SEL is clumped!

BJT is used instead of NMOS

CircuitDesign 8 / 21

Output still distorted!

st Another attempt - NMOS clumped to VEE

The source of NMOS connected to VEE (-15V) AC coupling to the adder $\ensuremath{\mathsf{AC}}$

CircuitDesign 9 / 21

Less distortion!

* Another attempt - Relays used for shunt

CircuitDesign 10 / 21

Freq Resp

Harmonic distortion

CircuitDesign 11 / 21

Tips on MC-12: Click the chart above, then the following dialog appears.

Select the options indicated by the red circles.

CircuitDesign 12 / 21

Square wave response | Comparison of the compar

Settings of square wave source

10kHz square wave

CircuitDesign 13 / 21

Crosstalk

Crosstalk from DAC: 19uV_{peak}... -94.4dB

CircuitDesign 14 / 21

* Conclusion

Relay + Adder is the best solution!

Final circuit | Fig. |

Printed: 2025/6/8

CircuitDesign 15 / 21

Simulation of Matrix

* Schematics for simulation

Printed: 2025/6/8

Op amp: LME49860 (similar to LME49720)

Original schem is wrong: R3 and R7 are connected to the output!

* Transient - sine wave

V3 (OUT_L): 2.5kHz, 1V_{peak} V4 (OUT_R): 3.6kHz, 1Vpeak

CircuitDesign 16 / 21

CircuitDesign 17 / 21

* Freq resp

Printed: 2025/6/8

I quit simulation of Matrix here, because its SQ is not important.

CircuitDesign 18 / 21

For the latest schematic, see CC 218_VOL Schematic.pdfCC-218_VOL_B - Schematic.pdf.

2025/03/21

Printed: 2025/6/8

CircuitDesign 19 / 21

Rev.A

LC 1st-order LPF added to DC power input: L: 220uH (L1~2), C: 47uF (C35~36) $f_C = 1.5 kHz$

Rev.B

CR 1st-order LPF added to output buffer: C: 1000pF (C39~40), R: 1k ohm (R15~16) f_C = 160kHz

CircuitDesign 20 / 21

Power Dissipation

2024/12/20

Printed: 2025/6/8

* Current dissipation estimate

Device	Qty	Current dissipation		Total current dissipation	
		V+	V-	+23V	-23V
LME49720	3	12. OmA	12. OmA	36. OmA	36. OmA
0PA627	4	7. OmA	7. OmA	28. OmA	28. OmA
PGA2310	1	10. OmA	10. OmA	10. OmA	10. OmA
LED	1	10.5mA	10. 5mA	10. 5mA	10.5mA
Total				84. 5mA	84. 5mA

[END OF DOCUMENT]

CircuitDesign 21 / 21